Padlock oligonucleotides as a tool for labeling superhelical DNA.
نویسندگان
چکیده
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called 'padlock oligonucleotide'. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.
منابع مشابه
Padlock oligonucleotides for duplex DNA based on sequence-specific triple helix formation.
An oligonucleotide was circularized around double-stranded DNA thanks to triple helix formation. Short oligonucleotides are known to be able to form DNA triple helices by binding into the DNA major groove at an oligopurine.oligopyrimidine sequence. After sequence-specific recognition of a double-stranded DNA target through triple helix formation, the ends of the triplex-forming oligonucleotide ...
متن کاملSequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.
Site-specific labeling of covalently closed circular DNA was achieved by using triple helix-forming oligonucleotides 10, 11 and 27 nt in length. The sequences consisted exclusively of pyrimidines (C and T) with a reactive psoralen at the 5'-end and a biotin at the 3'-end. The probes were directed to different target sites on the plasmids pUC18 (2686 bp), pUC18/4A (2799 bp) and pUC1 8/4A-H 1 (25...
متن کاملGenotyping RNA and DNA Using Padlock Probes
Antson, D.-O. 2001. Genotyping RNA and DNA using padlock probes. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1050. 40pp. Uppsala. ISBN 91-554-5057-1 Novel techniques are needed to investigate the genetic variation revealed in the first draft of the human genome sequence. Padlock probes are recently developed reagents, suitable fo...
متن کاملDetection and identification of IHN and ISA viruses by isothermal DNA amplification in microcapillary tubes.
Unique base sequences derived from RNA of both infectious hematopoietic necrosis virus (IHNV) and infectious salmon anemia virus (ISAV) were detected and identified using a combination of surface-associated molecular padlock DNA probes (MPPs) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV or ISAV were ...
متن کاملOligonucleotide gap-fill ligation for mutation detection and sequencing in situ
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2002